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Abstract
The phenomenon of cortical thinning with age has been well established; however, the measured rate of change varies
between studies. The source of this variation could be image acquisition techniques including hardware and vendor specific
differences. Databases are often consolidated to increase the number of subjects but underlying differences between these
datasets could have undesired effects. We explore differences in cerebral cortex thinning between 4 databases, totaling 1382
subjects. We investigate several aspects of these databases, including: 1) differences between databases of cortical thinning
rates versus age, 2) correlation of cortical thinning rates between regions for each database, and 3) regression bootstrapping
to determine the effect of the number of subjects included. We also examined the effect of different databases on age
prediction modeling. Cortical thinning rates were significantly different between databases in all 68 parcellated regions
(ANCOVA, P < 0.001). Subtle differences were observed in correlation matrices and bootstrapping convergence. Age
prediction modeling using a leave-one-out cross-validation approach showed varying prediction performance (0.64 < R2 <
0.82) between databases. When a database was used to calibrate the model and then applied to another database, prediction
performance consistently decreased. We conclude that there are indeed differences in the measured cortical thinning rates
between these large-scale databases.
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Introduction
Cerebral cortex thickness is known to change with age, becom-
ing thinner during the aging process. This effect has been
shown in single database studies and reliably reproduced (Salat

et al. 2004; Desikan et al. 2006; Marcus et al. 2007; Ericsson et al.
2008; Chen, He, et al. 2011; Gong et al. 2012; Lemaitre et al.
2012). Establishing normal healthy rates of cortical thinning
is important to understanding aging physiology. Increased
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thinning is also associated with conditions such as Alzheimer’s
disease (Li et al. 2012; Gaser et al. 2013). Although not specific
to a particular disease, divergence from normal healthy cortical
thickness may indicate which subjects will go on to develop
cognitive impairment (Gaser et al. 2013). Cortical thickness
measurements have been used recently for predicting chrono-
logical age from 3D structural anatomical images of individual
subjects (Franke et al. 2010, 2012, 2013, 2015; Gaser et al. 2013;
Valizadeh et al. 2017). Methods used for age prediction vary but
all techniques calibrate a model from a larger population of
subjects and then use an out-of-sample or leave-one-out cross
validation strategy to assert that they can predict age. The
accuracy of these predictions could be expected to perform best
when the out-of-sample test case is from a database where
parameters, such as resolution, scanner configuration, and
population demographics are similar. Likewise, if the model is
trained using a particular database, and applied to another
database it may not perform as well if there are underlying dif-
ferences between the databases.

Measurement of the cerebral cortex thickness is now well
established using magnetic resonance (MR) imaging with spa-
tial resolution on the order of 1mm3 and good contrast
between gray and white matter. MR imaging does not use ioniz-
ing radiation and allows for healthy subjects to be imaged with-
out compromising their safety. Structural T1-weighted (T1w)
whole brain images are routinely collected as they provide a
source image optimized for investigating various brain struc-
tures. There are a variety of available anatomical atlases, algo-
rithms, and software packages for segmenting brain structures
(Hildebrand and Rüegsegger 1997; Fischl and Dale 2000; Fischl
et al. 2004; Desikan et al. 2006; Tustison et al. 2014).

The signal intensity in T1w images is impacted by a number
of factors and is thus not quantitative with respect to T1 relaxa-
tion; however, the morphological (or structural) information is
of sufficient quality to make precise measurements of anatomi-
cal changes in the brain such as cortical thickness. In practice,
there are large differences in the numerical voxel measure-
ments (i.e., voxel values and contrast) from T1w imaging,
which can depend on sources including the individual subject
being imaged, the orientation of their head in the magnet,
scanner hardware (magnetic field strength, vendor, software
version, receiver coil configuration, etc.), image acquisition
parameters (including spatial resolution, flip angle and acquisi-
tion timing), and other vendor specific hardware and image
reconstruction algorithms (Han et al. 2006; Dickerson et al.
2008). Subject specific changes can also subtly affect cortical
thickness measurements, such as hydration, menstrual cycle
phase, and activity level (Duning et al. 2005; Sowell et al. 2007;
Pletzer et al. 2010; Kempton et al. 2011).

Although there are similarities between T1w images in
different image databases, there may also be important dif-
ferences. It is generally assumed that structural metrics cal-
culated from T1w images do not vary considerably between
different large-scale studies and thus studies are often com-
bined to yield the largest possible multicenter database for
analysis. A few studies have tested for differences between
vendor and field strength (Han et al. 2006; Dickerson et al.
2008), and in these studies the parameters and subjects were
precisely controlled between scans, keeping sequence para-
meters and subjects the same as field strength varied. These
studies concluded that there were small but significant
effects of field strength and vendor on cortical thickness, and
that sequence parameters could also result in differences.
From these studies, it was concluded that magnet configuration

and sequence parameters should be as similar as possible when
performing large populations studies. However, the reality is
that many parameters beyond the vendor and field strength
will be different, such as the head coil and other hardware,
subject specific and image acquisition parameters. Thus, the
variation accounted for by field strength alone would be mis-
representative. Our current work aims to build on this obser-
vation by explicitly investigating the differences between
several large databases.

The overall goal of the current study is to characterize and
compare the rate of cortical thinning between multiple large
image databases. Four lifespan databases are compared, each
with >180 subjects. The cerebral cortex thickness was calcu-
lated for all the subjects and parcellated. We determined the
rate of change in thickness of the cerebral cortex with age, and
examined differences between databases with a regression-
based analysis. Statistical analyses were performed to test for
differences between databases. The variance in each database
was characterized with correlation and bootstrapping analysis.
Finally, age prediction was performed between each of the dif-
ferent databases to determine the effect of database on chrono-
logical age estimation.

Methods
Image Data

T1w structural anatomical scans from 4 large databases were
gathered: 1) the Calgary Normative Study (CNS) Database (Tsang
et al. 2017), 2) the Open Access Series of Imaging Studies (OASIS)
database (Marcus et al. 2007; OASIS 2017), 3) the Information
eXtraction of Images (IXI) database (Ericsson et al. 2008; IXI
2017), and 4) the Dallas Lifespan Brain Study (DLBS) database
(DLBS 2017). The first database was collected locally and the
other 3 are open source databases and used widely among the
research community. Reporting of acquisition parameters varied
between databases. T1w imaging used a 3D magnetization pre-
pared rapid gradient echo (MPRAGE) (Mugler and Brookeman
1990) and had imaging parameters listed as either: inversion
time (TI)/repetition time (TR)/echo time (TE)/flip angle (α), or TR/
TE/α, respectively, as reported by the database repository. Briefly:

• The CNS database was collected in Calgary, Alberta (Tsang
et al. 2017). All subjects in this study were healthy subjects
who tested above 26 on the Montreal Cognitive Assessment
(Nasreddine et al. 2005) and self-reported no neurological dis-
ease or psychiatric illness. This database consisted of 188
subjects (71 males, 117 females, aged 18–87 years). The data
was collected on a 3 T General Electric (GE) scanner and the
image resolution was 1mm isotropic. The acquisition para-
meters were TI/TR/TE/α of 650ms/5.84ms/2.36ms/8°.

• The OASIS database was collected in St. Louis, MI (Marcus
et al. 2007; OASIS 2017). All subjects included from this study
were right handed, had a normal mini-mental state exam
scoring (Tombaugh and McIntyre 1992) and were otherwise
healthy. A total of 316 subjects were included (119 males, 197
females, aged 18–96 years). Acquisitions were performed on a
1.5 T Siemens scanner. These T1w images had a 1mm ×
1mm × 1.25mm resolution. Postprocessing on this data was
performed and included facial feature removal to anonymize
subjects prior to open access release. The acquisition para-
meters were TI/TR/TE/α of 200ms/9.7ms/4ms/10°.

• The IXI database was collected in London, UK (IXI 2017).
Images in this database were collected on 3 MR scanners
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(Philips 3 T, Philips 1.5 T, or GE 1.5 T). A total of 563 subjects
were included (250 males, 313 females, aged 20–86 years).
The images in this database had a resolution of 0.94mm ×
0.94mm × 1.2mm. On the Phillips 3 T the parameters were
TR/TE/α 9.6ms/4.6ms/8°, on the Phillips 1.5 T the parameters
were 9.8ms/4.6ms/8°. The acquisition parameters for the GE
scanner were not reported.

• The DLBS database was collected in Dallas, TX (DLBS 2017).
Images were acquired on a Philips 3 T. A total of 315 subjects
had image data in this database (117 males, 198 females,
aged 20–89 years). Subjects had normal mini-mental state
exam (>24/30). Image resolution was 1mm isotropic and the
scan parameters TR/TE/α were 8.3ms/3.7ms/12°.

A summary of these databases is provided in Table 1.

Image Processing

All T1w images were processed using FreeSurfer (version 5.3.0)
The cerebral cortex was segmented and parcellated into 34
regions per hemisphere using the Desikan–Killiany (Desikan
et al. 2006) atlas. Processing was performed by running the
ReconAll function with the Qcache feature, all processing was
performed on a parallel computer cluster (SGI Altix XE 1300
cluster with 316 compute nodes each with two 6-core Intel
Xeon X5650 2.66 GHz processors and 48 GB of memory). Briefly,
the FreeSurfer pipeline for segmentation and cortical parcella-
tion involves skull stripping (Ségonne et al. 2004), registration
to Talairach space, intensity normalization (Sled et al. 1998),
white matter segmentation, tessellation of the gray matter/
white matter boundary, and automated topology correction
(Fischl et al. 2001; Ségonne et al. 2007). The tessellated surface
is used to define the white matter and pial boundaries, which is
required for the calculation of cortical thickness (Dale and
Sereno 1993; Dale et al. 1999; Fischl and Dale 2000). Following
surface inflation (Fischl et al. 1999), cortical parcellation with
respect to gyral and sulcal structure is performed (Fischl et al.
2004; Desikan et al. 2006). Cortical thickness is calculated as the
closest distance from the gray/white boundary to the gray-
cerebral spinal fluid boundary at each vertex on the tessellated
white matter surface (Fischl and Dale 2000). Average thickness
was calculated for each parcellated region and for each hemi-
sphere, resulting in 70 measurements per subject.

Quality assurance of the FreeSurfer processing was per-
formed by visually inspecting all the segmentations and
excluding subjects with clear errors. After this, a statistical
analysis of the histograms, scatterplots, and correlations of
each region for each database was used to identify potential
outliers. A total of 14 subjects were excluded from the analysis:
3 from the CNS database, 4 from the OASIS database, 3 from
the IXI database, and 4 from the DLBS.

Analysis

Cortical surface maps were calculated using the general linear
model (GLM) utility in FreeSurfer with 2 regressors: database as
a factor (CNS, OASIS, IXI, DLBS) and age as a covariate. All sub-
jects were first registered to a standard surface. A surface map
of the log P-value (from the GLM) was rendered. The GLM anal-
ysis allowed for both positive and negative scale representing
where the databases were similar and dissimilar, respectively.

The cortical thickness measurements were then exported to
Matlab (R2016b) for the following statistical analyses. Thickness
measurements from the 70 parcellated regions were regressed
versus age using linear regression. Laterality index, (L − R)/(L + R),
was computed for each and region and database. Parameters
associated with each regression (the slope, the intercept and
the coefficient of determination (R2)) were plotted on a multivari-
able polar plot. Pearson correlation was used to determine the
significance of the linear relationship between cortical thickness
and age for each region in each database, this was not done to
compare between databases. Assumptions required for analysis
of covariance (ANCOVA) tests were then verified, which included
transforming the cortical thickness data to residuals by remov-
ing the regression line component, then Jarque–Bera tests for
normality were performed on each region in each database, and
Levene’s tests for homogeneity of variance between databases
were performed for each region. When testing ANCOVA assump-
tions, thresholds of P < 0.05 and P < 0.01 were counted.

An independent-samples one-way ANCOVA with the 4-level
factor of database (CNS, OASIS, IXI, DLBS) and age as the covari-
ate was performed on each region separately. To test for the
differences in both the intercept and the slope a separate lines
model was used for the ANCOVA instead of the more conven-
tional parallel lines model. The ANCOVA tests examined corti-
cal thickness differences between databases. A threshold of P <
0.001 was considered significant for the ANCOVA (a conserva-
tive threshold was selected to compensate for the large number
of subjects and tests). Due to the high number of comparisons,
a Bonferroni multiple comparisons corrected P value was also
considered (P < 0.001/70 = 1.43(10−5)).

The variance of the data was characterized with correlation
and bootstrapping. Correlation matrices were used to evaluate
relationships between regions within each database (Chen, He,
et al. 2011) and for the consolidated database. Box’s M test was
used to test for differences between covariance matrices
between the databases. A bootstrap analysis was performed to
determine the number of subjects per decade of life (20–29,
30–39, etc.) required to establish consistent correlations. Using
10 000 permutations of the subject order, the number of sub-
jects included per decade was increased from 3 to 20. If there
were fewer than twenty subjects per decade in a database, then
no new subjects were included for that decade when the maxi-
mum was reached. The standard deviation of the calculated
slope, intercept and R2 were calculated from the set of permu-
tations. The standard deviation of each parameter was plotted
against the number of subjects per decade. The standard devia-
tion converged to a given tolerance (95% of the minimum) of
each regression coefficient, which indicated the deviation of
that parameter with resampling. This can be considered the
intradatabase variation of the regression coefficient. For the
consolidated database, the number of subjects included was
computed from 3 to 30 subjects, since more were available.

Age estimation using a multiple regression prediction model
was performed and a calibration was calculated using each
database. A leave-one-out validation strategy was performed

Table 1 Summary of ages and magnet type each database

Database Age range
(years)

Number of
participants

Scanner

CNS 18–87 188 (71M) 3 T GE
OASIS 18–96 316 (119M) 1.5 T Siemens
IXI 20–86 563 (250M) 1.5 T and 3 T Phillips, 1.5 T GE
DLBS 20–89 315 (117M) 3 T Phillips
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on each database and for the consolidated database. A model
calibrated with each database was applied to the other data-
bases in a full out-of-sample validation strategy. The R2 and
mean absolute difference (MAD) in age were used as a perfor-
mance metrics to determine the quality of prediction.

Results
Histograms of the age distribution and gender are shown for
each database and for the consolidated database in Figure 1.

Figure 2 shows a statistical map of the brain surface gener-
ated from the FreeSurfer GLM utility, in which we tested for
cortical thickness differences between databases. With this

analysis, local regions of larger and smaller differences are
revealed. There is lower P-values of the temporal and occipital
lobes and lower in the frontal and parietal lobes. Similar regres-
sions are seen between the right and left hemispheres.

For the 68 parcellated regional measurements and 2 cortical
thickness measurements averaged for each hemispheres (70
measurements total), the Pearson correlation tests of cortical
thickness versus age were significant in all regions and data-
bases except: bilateral temporal pole, entorhinal, left (L)-medial
orbitofrontal, L-cuneus, L-caudal anterior cingulate, right
(R)-insula, R-rostral anterior cingulate, R-pericalcarine, and
R-inferior temporal. The Jarque–Bera tests of normality indi-
cated that the residual data was mostly normally distributed
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Figure 1. Distribution of age and sex among the 4 databases. Sample sizes per decade are mostly uniform over the lifespan, with 2 primary exceptions: 1) the OASIS

database, which has more younger subjects and 2) all the database tend to have fewer subjects over 75. The impact of the latter exception is more pronounced when

looking at the combined database histogram. In general, databases included more female subjects (approximately 2/3 female and 1/3 male participants).
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(19 of 280 were significant at P < 0.01 and 8 of 280 tests were
significant at P < 0.05). The Levene’s test for homogeneity of
variance between databases were also statistically significant
for some regions, indicate that for these regions, variances
were not equal (13 of 70 regions were significant at P < 0.01 and
6 of 70 at P < 0.05). However, this was not a concern as such
assumption violations affect the Type I error rate and thus the
possibility of false-positive results. Here, our use of large sam-
ple sizes and conservative Bonferroni multiple comparisons
correction (P < 0.001/70 = 1.43(10−5)) ensured that the statistical
tests were robust to minor violations. The ANCOVA test results
were consistent with the surface map.

Figure 3 shows a polar plot of the correlation parameters
(slope, intercept, and R2) for each region and database, and
for the consolidated database. A left–right symmetry was
observed, as well as differences in the regressions between
databases. Figure 4 shows the laterality indices. Example lin-
ear regressions for the R-banks superior temporal sulcus and
the R-parahippocampal gyrus, are shown in Figure 5. These
regions highlight instances where the slopes are similar and
dissimilar, respectively. In both cases the ANCOVA test showed
statistical significance.

The correlation matrices are shown in Figure 6. These matri-
ces reveal how related each cortical region’s thickness is to the
other regions’ thickness. The principal observation from this
figure is the consistency of regions of higher correlation
between databases indicated by the red circles in Figure 6.
However, there are bands (red arrows) in which the correlation
is lower in the Calgary Normative and OASIS databases. Box’s
M test indicated that there was a difference between all covari-
ance matrices (P < 0.001). In Figure 7, the plots from the boot-
strapping are displayed. The trends are similar in each of the
plots and the standard deviation of the regression coefficients
are reduced as the number of subjects included is increased.

The average number of subjects per decade required to reach
30% of the standard deviation with 20 subjects of the slopes
was 15.1, 12.1, 11.4, and 12.3, for the CNS, OASIS, IXI, and DLBS
databases respectively. The other parameters followed this
trend. The convergence of the IXI database was faster com-
pared with the other, which implies fewer outliers in the IXI
database. The subtle deviation in the cross-correlation matrix
and bootstrapping indicates similar qualities in the variance of
each database.

Table 2 shows a summary of the age predictions from the
multiple regression model. The R2 values in the table range
between 0.647 and 0.818, and the MAD values ranged from 8.74
to 14.00 years. Of particular interest is the lower R2 of the leave-
one-out cross validation for the CNS database, 0.647, this can
likely be explained by the fewer subjects available for calibra-
tion. When inspecting Table 1, it can be noted that the R2 is
generally lower when an alternative database is used for cali-
bration rather than the leave-one-out cross validation. The
MAD shows a similar trend whereby the best predictions are
achieved when the calibration is performed with the leave-
one-out validation rather than applying a model calibrated
from another database (a.k.a., full out-of-sample validation).
The MAD metric appears to be a better indicator of prediction
accuracy than R2. To illustrate this point, the OASIS database,
which had weaker correlations (Fig. 3), had higher R2 suggesting
that it was well predicted, although the MAD indicated that it
was the poorest intrapredictive database with leave-one-out
cross-correlation. In all cases, MAD increased when an alterna-
tive database was used for calibration. When consolidating
databases, a reasonable predictive power remained; this is sim-
ilar to other recent reported findings of R2 using many data-
bases and multiple linear regression modeling (Valizadeh et al.
2017).

Discussion
The main finding of this study is that there are significant dif-
ferences in the estimated cortical thinning rates between these
large databases. A total of 1382 subjects were included from 4
databases, which when combined increased statistical power,
but showed small yet statistically significant differences between
databases. The fact that the differences are mostly small and that
correlation matrix and bootstrapping results are similar, despite
considerable acquisition protocol differences, gives a high level of
confidence to the overall cortical thinning trends. The differences
are, however, larger than the asymptotic standard deviation
observed in the bootstrapping plots, indicating that the differ-
ences are practical and important.

There are several assumptions required prior to performing
ANCOVA tests, including linearity with the covariate, and nor-
mality and homogeneity of the residuals. Tests of linearity,
normality, and homogeneity of variance were performed, and
the assumptions were satisfied in the majority of tests. Often a
parallel lines model is used, but in this study a model allowing
for different slopes was used and, thus, consistency of slopes
was not tested for. Post hoc tests are also often done after find-
ing statistical significance in a multifactorial analysis, but this
would result in an additional 840 statistical tests. The findings
of these post hoc tests would determine regional cortical thick-
ness differences between individual databases, however, this
was not the aim of the current study.

Inclusion of sex as a cofactor when performing the statisti-
cal tests was also incorporated (results are not shown).
Specifically, a multivariate ANCOVA (MANCOVA) test similar to

Left Right

Figure 2. Surface statistical maps from the GLM analysis. These maps show the

log(P-value) found when testing for differences using a general linear model

with database as a factor and age as a covariate. Almost all regions of the cortex

indicated statistically significant differences between databases, consistent

with the ANCOVA testing. These images show regions of greater statistical sig-

nificance (dark blue), and regions of lower statistical significance (teal). A

minority of the surface showed regions where the databases were similar (red),

or do not show statistical significance between databases (no color overlay).
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the ANCOVA test was also performed for each region including
sex as a cofactor. Since the databases have similar sex ratios, it
did not impact the results and all the regions had the same
level of significance, so only the ANCOVA results are reported.

The present findings are in agreement with another study
where consistency between databases of similar regions was
found, including the superior frontal gyrus, the middle frontal
gyrus, and the parssotriangularis (Fjell et al. 2009). This study
also investigated the inconsistencies of cross sectional cortical
thinning between databases, although their databases were
smaller and the analysis and comparison was different, there
were regional similarities of consistency and inconsistency
between databases.

Many studies compare a disease group with a healthy group
to determine if there are abnormalities of cortical thickness.
When a statistically significant difference observed between
these 2 groups is reported, it is possible this reported difference
is similar to that found between 2 healthy groups. Thus, report-
ing increased cortical thinning with that disease state might be
misrepresentative. To avoid this, it is important to ensure that
the acquisition is the same between the healthy and diseased
groups and perform bootstrapping to assert that the difference
is greater than that found when resampling the individual
groups.

There are a number of software packages available for calcu-
lating cortical thickness. There may be some differences in the
cortical thickness measurements depending on the software
used (Hildebrand and Rüegsegger 1997; Lerch and Evans 2005;
Tustison et al. 2014). In this work, we have chosen to use only
FreeSurfer, because we believe this software tool is robust and
is also widely accepted. Metrics other than cortical thickness
could also be utilized, such as volume or curvature. As our pro-
cessing methodology was consistent and quality control was
performed, we can conclude that deviations found between
these databases did not arise from the processing per se and
must be a result of the acquisition (e.g., field strength, voxel
size) or the studied populations (4 different groups with differ-
ent age and ethnic distributions). Regions of known susceptibil-
ity may also vary more between databases.

Quality assurance of the segmentations and cortical thick-
ness measurements are difficult when dealing with a large
cohort. FreeSurfer allows for the adjustment of segmentations
by insertion of control points on a subject-by-subject basis. For
example, if each region was inspected visually for 5min, the
total time to inspect all segmentations would take over 7800 h
(1382 subjects × 68 regions per region × 5min per region). This
time does not include the time required to make modifications
and reprocess, and then recheck the subjects. It would also
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the slope, the middle ring plots the intercept and the innermost ring plots the R2. Databases are separated by color and markers separate the metrics (see legend).

The ranges of values are indicated by the scale bars on each of the 3 rings; the range of slopes is from 0.0mm/year to −0.01mm/year, the range of intercepts is from

1.5 to 4.5mm, and the range of R2 is from 0.0 to 0.6.
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introduce a subjective evaluation into the study that would be
difficult for other groups to reproduce this study. Rejecting
quality assurance of the segmentations entirely is also negli-
gent, as real errors could exist and skew the results. As
described in the methods section, we applied 2 quality assur-
ance approaches: 1) all subjects were visually inspected for
errors and 2) all measurements were statistically checked for
outliers. We removed a total of 14 subjects from the analysis,
consistent with error rates from other healthy normal data-
bases (Smith et al. 2015; Potvin et al. 2016, 2017a,b, 2017a,b).
This small amount of the rejected data had no influence on the
findings of this study, as inclusion or exclusion did not impact
the findings. Overall, the FreeSurfer algorithm provided robust
cortical thickness measurements.

The OASIS database was the oldest of the databases used
and had a number of deviations with respect to the other data-
bases. In particular, the resolution was slightly lower (1mm ×
1mm × 1.25mm vs. 1mm × 1mm × 1mm) and there were 2–4
T1w image volumes for each subject and processed images cal-
culated from the multiple repeated images to yield effective

higher SNR images and skull stripped images. To minimize dif-
ference between databases, only the first of the T1w volumetric
source images were used in our analysis of the OASIS data.

There are many factors that are known to affect cortical
brain thickness, such as sex, hydration, menstrual cycle phase,
and handedness (Duning et al. 2005; Sowell et al. 2007; Pletzer
et al. 2010; Kempton et al. 2011). Sex distribution was similar
between databases (Fig. 1). These parameters, however, were
not considered in this analysis since this information was not
always reported in the databases, potentially limiting the scope
for comparison. Testing for differences in resolution and field
strength, flip angle, SNR, scanner manufacturer, or neurosp-
sych test were also not performed, as we cannot control for
those factors independently of database; too many parameters
were changing simultaneously between databases to ascribe
those to individual sources to the variation. There are several
studies that attempt to determine the effect of these para-
meters when combining large numbers of databases (Potvin
et al. 2016, 2017a,b, 2017a,b), but omit testing for changes in
database, hence motivating the current study.
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Figure 4. Laterality index computed for each region and each database.
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On average, the R2 between all regions in all databases was
0.24, indicating that only a fraction (24%) of the cortical thickness
variation can be accounted for by age. This is consistent with
some other reports (Tamnes et al. 2010; Chen, Rosas, et al. 2011;
Lemaitre et al. 2012; Tustison et al. 2014). The regional average
R2 were: 0.20, 0.23, 0.20, and 0.30 for the CNS, OASIS, IXI, and
DLBS databases, respectively. Including other cofactors such as
sex, age, handedness, have been shown to improve the R2

slightly. Longitudinal analysis would improve the R2 (Fjell et al.
2014), which suggests that a large portion of the remaining vari-
ance is attributable to individual variation. Furthermore, R2 could

also be increased by selection of a more sophisticated model,
such as localized regression (Fjell et al. 2014; Zhou et al. 2015).

The bootstrap results (Fig. 7) indicate the minimum number
of subjects required to establish a consistent regression of cor-
tical thickness versus age. We found that the total number of
subjects required being on the order of 15–20 per decade. The
minimum was similar between databases showing that this
phenomenon is consistent; though, including more subjects
would always yield more consistent regression model fits.

Symmetry of cortical thickness between hemispheres is
widely assumed. In some studies only the bilateral average

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)
CNS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
OASIS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
IXI Database

10 20 30 40 50 60 70 80 90 100
age (years)

2

2.5

3

3.5
DLBS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
Combined Databases

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
CNS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
OASIS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
IXI Database

10 20 30 40 50 60 70 80 90 100
age (years)

2

2.5

3

3.5
DLBS Database

10 20 30 40 50 60 70 80 90 100

age (years)

2

2.5

3

3.5
Combined Databases

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)
C

or
tic

al
 T

hi
ck

ne
ss

 (
m

m
)

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)
C

or
tic

al
 T

hi
ck

ne
ss

 (
m

m
)

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)
C

or
tic

al
 T

hi
ck

ne
ss

 (
m

m
)

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)
C

or
tic

al
 T

hi
ck

ne
ss

 (
m

m
)

C
or

tic
al

 T
hi

ck
ne

ss
 (

m
m

)

Figure 5. Example correlations of cortical thickness versus age. The first 4 rows of plots correspond to the 4 independent databases and are color coded accordingly,

and the fifth row shows their overlap and consolidated correlation from all the databases (black dashed line). Data from 2 regions (R-banks superior temporal sulcus,

left; R-parahippocampal gyrus, right) are shown here to illustrate differences between databases. The left column illustrates a case with large divergence between

databases and the right column, a case with small divergence.

8 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy197/5078221 by H

arvard Library user on 13 Septem
ber 2018



Combined Databases
Banks superior temporal sulcus
Caudal anterior-cingulate cortex

Caudal middle frontal gyrus
Cuneus cortex

Entorhinal cortex
Fusiform gyrus

Inferior parietal cortex
Inferior temporal gyrus

Isthmus? cingulate cortex
Lateral occipital cortex

Lateral orbital frontal cortex
Lingual gyrus

Medial orbital frontal cortex
Middle temporal gyrus

Parahippocampal gyrus
Paracentral lobule

Pars opercularis
Pars orbitalis

Pars triangularis
Pericalcarine cortex

Postcentral gyrus
Posterior-cingulate cortex

Precentral gyrus
Precuneus cortex

Rostral anterior cingulate cortex
Rostral middle frontal gyrus

Superior frontal gyrus
Superior parietal cortex

Superior temporal gyrus
Supramarginal gyrus

Frontal pole
Temporal pole

Transverse temporal cortex
Insula

Average
Banks superior temporal sulcus
Caudal anterior-cingulate cortex

Caudal middle frontal gyrus
Cuneus cortex

Entorhinal cortex
Fusiform gyrus

Inferior parietal cortex
Inferior temporal gyrus

Isthmus? cingulate cortex
Lateral occipital cortex

Lateral orbital frontal cortex
Lingual gyrus

Medial orbital frontal cortex
Middle temporal gyrus

Parahippocampal gyrus
Paracentral lobule

Pars opercularis
Pars orbitalis

Pars triangularis
Pericalcarine cortex

Postcentral gyrus
Posterior-cingulate cortex

Precentral gyrus
Precuneus cortex

Rostral anterior cingulate cortex
Rostral middle frontal gyrus

Superior frontal gyrus
Superior parietal cortex

Superior temporal gyrus
Supramarginal gyrus

Frontal pole
Temporal pole

Transverse temporal cortex
Insula

Average 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ig

h
t 
H

e
m

is
p

h
e

re
L
e
ft

 H
e
m

is
p
h
e

re
CNS

OASIS

IXI

DLBS

Figure 6. Correlation matrices. The large matrix (left) is the correlation matrix from the consolidated database. On the left-hand side of this matrix is the ordering of

the regions. The left-hemisphere follow the right-hemisphere measurements. To the right of the large matrix are 4 plots showing the correlation matrix for each

independent database. The regions encircled in red on the large matrix indicate regions of consistently high correlation between the databases, the red arrows point

to bands, which are inconsistent between databases.

Figure 7. Bootstrapping analysis. Each graph plots the standard deviation of the slope (top row), intercept (middle row) and R2 value (bottom row) versus number of sub-

jects per decade. A total of 70 individual lines were calculated using 10 000 ordered permutations for each number of subjects per decade. As the number of subjects per

decade increased, the standard deviation of the regression parameters decreased and the regression result was more consistent with the inclusion of more data.
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cortical thickness is reported (Lemaitre et al. 2012). Although,
Luders et al. (2006) have shown asymmetry. We did not average
between hemispheres, and some bilateral symmetry can be
observed in Figures 2–4 and 6. Figure 4 shows that although the
laterality indices are small, they are nonzero and can be differ-
ent between databases.

The implication of the age prediction portion of this study
suggests that models should have enough subjects to accu-
rately predict the age, and that data acquired in a fashion simi-
lar to the subject being predicted should be included in the
calibration. A decrease in prediction outcome metrics was
observed when using a different database for the calibration
than testing. However, when all data were consolidated, the
predictive power remained high. We used a simple multiple
regression model, but higher-level models, such as neural net-
works, support vector machines, or random forest regression
could also be used (Valizadeh et al. 2017).

Conclusion
We conclude that the cortical thinning relationships for each of
the 4 databases considered are statistically different. The differ-
ences are small for most brain regions, yet was statistically
significant. An observable difference exists between the corre-
lation matrices and bootstrap responses, but these changes
are subtle, implying consistency of the variance between data-
bases. Differences detected between diseased and healthy
groups should be greater than the differences observed here
between healthy groups. Deviations in acquisitions and/or
subject population characteristics should be minimized when
amalgamating databases. Combining individual databases
into large cohorts should be done with caution.
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